Sentiment Polarity Identification in Financial News: A Cohesion-based Approach
نویسندگان
چکیده
Text is not unadulterated fact. A text can make you laugh or cry but can it also make you short sell your stocks in company A and buy up options in company B? Research in the domain of finance strongly suggests that it can. Studies have shown that both the informational and affective aspects of news text affect the markets in profound ways, impacting on volumes of trades, stock prices, volatility and even future firm earnings. This paper aims to explore a computable metric of positive or negative polarity in financial news text which is consistent with human judgments and can be used in a quantitative analysis of news sentiment impact on financial markets. Results from a preliminary evaluation are presented and discussed.
منابع مشابه
Semantic-Based Sentiment analysis in financial news
Sentiment analysis deals with the computational treatment of opinions expressed in written texts. The addition of the already mature semantic technologies to this field has proven to increase the results accuracy. In this work, a semantically-enhanced methodology for the annotation of sentiment polarity in financial news is presented. The proposed methodology is based on an algorithm that combi...
متن کاملINF-UFRGS at SemEval-2017 Task 5: A Supervised Identification of Sentiment Score in Tweets and Headlines
This paper describes a supervised solution for detecting the polarity scores of tweets or headline news in the financial domain, submitted to the SemEval 2017 Fine-Grained Sentiment Analysis on Financial Microblogs and News Task. The premise is that it is possible to understand market reaction over a company stock by measuring the positive/negative sentiment contained in the financial tweets an...
متن کاملFEUP at SemEval-2017 Task 5: Predicting Sentiment Polarity and Intensity with Financial Word Embeddings
This paper presents the approach developed at the Faculty of Engineering of University of Porto, to participate in SemEval 2017, Task 5: Fine-grained Sentiment Analysis on Financial Microblogs and News. The task consisted in predicting a real continuous variable from -1.0 to +1.0 representing the polarity and intensity of sentiment concerning companies/stocks mentioned in short texts. We modele...
متن کاملTrading Strategies To Exploit News Sentiment
We use quantitative news data generated by a large-scale natural language processing (NLP) news analysis system to perform a comprehensive study on how a company’s reported news frequency, sentiment polarity and subjectivity anticipates or reflects its stock trading volumes and financial returns. Our analysis provides concrete evidence that news data is highly informative, as previously suggest...
متن کاملCorporate News Classification and Valence Prediction: A Supervised Approach
News articles have always been a prominent force in the formation of a company’s financial image in the minds of the general public, especially the investors. Given the large amount of news being generated these days through various websites, it is possible to mine the general sentiment of a particular company being portrayed by media agencies over a period of time, which can be utilized to gau...
متن کامل